Data Mining Process Using Clustering : A Survey
نویسندگان
چکیده
Clustering is a basic and useful method in understanding and exploring a data set. Clustering is division of data into groups of similar objects. Each group, called cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Interest in clustering has increased recently in new areas of applications including data mining, bioinformatics, web mining, text mining, image analysis and so on. This survey focuses on clustering in data mining. The goal of this survey is to provide a review of different clustering algorithms in data mining. A Categorization of clustering algorithms has been provided closely followed by this survey. The basics of Hierarchical Clustering include Linkage Metrics, Hierarchical Clusters of Arbitrary and Binary Divisive Partitioning is discussed at first. Next discussion is Algorithms of the Partitioning Relocation Clustering include Probabilistic Clustering, K-Medoids Methods, K-Means Methods. Density-Based-Partitioning, Grid-Based Methods and Co-Occurrence of Categorical Data are other sections. Their comparisons are mostly based on some specific applications and under certain conditions. So the results may become quite different if the conditions change.
منابع مشابه
Using Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
متن کاملUsing Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
متن کاملClustering and Ranking University Majors using Data Mining and AHP algorithms: The case of Iran
Abstract: Although all university majors are prominent and the necessity of their presences is of no question, they might not have the same priority basis considering different resources and strategies that could be spotted for a country. This paper focuses on clustering and ranking university majors in Iran. To do so, a model is presented to clarify the procedure. Eight different criteria are ...
متن کاملImproved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملApplying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures
Uncertain and stochastic states have been always taken into consideration in the fields of risk management and accident, like other fields of industrial engineering, and have made decision making difficult and complicated for managers in corrective action selection and control measure approach. In this research, huge data sets of the accidents of a manufacturing and industrial unit have been st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007